Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Clinical and Experimental Reproductive Medicine ; : 154-159, 2023.
Article in English | WPRIM | ID: wpr-999905

ABSTRACT

Monospermy occurs in the process of normal fertilization where a single sperm fuses with the egg, resulting in the formation of a diploid zygote. During the process of fertilization, the sperm must penetrate the zona pellucida (ZP), the outer layer of the egg, to reach the egg’s plasma membrane. Once a sperm binds to the ZP, it undergoes an acrosomal reaction, which involves the release of enzymes from the sperm’s acrosome that help it to penetrate the ZP. Ovastacin is one of the enzymes that is involved in breaking down the ZP. Studies have shown that ovastacin is necessary for the breakdown of the ZP and for successful fertilization to occur. However, the activity of ovastacin is tightly regulated to ensure that only one sperm can fertilize the egg. One way in which ovastacin helps to prevent polyspermy (the fertilization of an egg by more than one sperm) is by rapidly degrading the ZP after a sperm has penetrated it. This makes it difficult for additional sperm to penetrate the ZP and fertilize the egg. Ovastacin is also thought to play a role in the block to polyspermy, a mechanism that prevents additional sperm from fusing with the egg’s plasma membrane after fertilization has occurred. In summary, the role of ovastacin in monospermic fertilization is to help ensure that only one sperm can fertilize the egg, while preventing polyspermy and ensuring successful fertilization.

2.
Clinical and Experimental Reproductive Medicine ; : 244-252, 2023.
Article in English | WPRIM | ID: wpr-999878

ABSTRACT

Objective@#We evaluated the efficacy of the newly developed optimized in vitro culture (OIVC) dish for cultivating preimplantation mouse embryos. This dish minimizes the need for mineral oil and incorporates microwells, providing a stable culture environment and enabling independent monitoring of individual embryos. @*Methods@#Mouse pronuclear (PN) zygotes and two-cell-stage embryos were collected at 18 and 46 hours after human chorionic gonadotropin injection, respectively. These were cultured for 120 hours using potassium simplex optimized medium (KSOM) to reach the blastocyst stage. The embryos were randomly allocated into three groups, each cultured in one of three dishes: a 60-mm culture dish, a microdrop dish, and an OIVC dish that we developed. @*Results@#The OIVC dish effectively maintained the osmolarity of the KSOM culture medium over a 5-day period using only 2 mL of mineral oil. This contrasts with the significant osmolarity increase observed in the 60-mm culture dish. Additionally, the OIVC dish exhibited higher blastulation rates from two-cell embryos (100%) relative to the other dish types. Moreover, blastocysts derived from both PN zygotes and two-cell embryos in the OIVC dish group demonstrated significantly elevated mean cell numbers. @*Conclusion@#Use of the OIVC dish markedly increased the number of cells in blastocysts derived from the in vitro culture of preimplantation mouse embryos. The capacity of this dish to maintain medium osmolarity with minimal mineral oil usage represents a breakthrough that may advance embryo culture techniques for various mammals, including human in vitro fertilization and embryo transfer programs.

3.
Clinical and Experimental Reproductive Medicine ; : 225-238, 2022.
Article in English | WPRIM | ID: wpr-966545

ABSTRACT

The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.

4.
Yonsei Medical Journal ; : 648-656, 2022.
Article in English | WPRIM | ID: wpr-939389

ABSTRACT

Purpose@#In women, menopause manifests with a variety of symptoms related to sex-hormone deficiency. Supplementing steroid hormones with pharmacological drugs has been widely practiced. However, considering the possible complications associated with artificial hormone therapy, studies have been conducted to find an alternative to pharmacological hormone replacement therapy. Accordingly, this study aimed to evaluate the efficacy of tissue-based hormone replacement therapy (tHRT) for treating post-menopausal signs and symptoms. @*Materials and Methods@#CD-1 mice were ovariectomized, and the ovaries were cryopreserved. Following artificial induction of post-menopausal osteoporosis, cryopreserved ovaries were subcutaneously autografted, and indexes related to bone health were monitored for 12 weeks. Bone mineral density (BMD), bone mineral contents (BMC), total bone volume (BV), and body fat mass were measured by dual energy X-ray absorptiometry. Uterine atrophy was assessed histologically, and bone microstructures were imaged by micro-computed tomography analysis. @*Results@#Regardless of the number of grafted ovaries, the BMC, BMD, and BV values of mice that underwent ovary transplantation were better than those that did not undergo transplantation. The uteruses in these mice were thicker and heavier after auto-transplantation. Furthermore, the bone microstructure recovered after tHRT. @*Conclusion@#Recovery of menopause-related bone loss and uterine atrophy was achieved through tHRT. Ovarian tissue cryopreservation and transplantation may be applicable not only in patients wanting to preserve fertility but also in sex hormone-deficient post-menopausal women.

5.
Clinical and Experimental Reproductive Medicine ; : 2-8, 2022.
Article in English | WPRIM | ID: wpr-925737

ABSTRACT

Humanity is in the midst of the coronavirus disease 2019 (COVID-19) pandemic, and vaccines—including mRNA vaccines—have been developed at an unprecedented speed. It is necessary to develop guidelines for vaccination for people undergoing treatment with assisted reproductive technology (ART) and for pregnancy-related situations based on the extant laboratory and clinical data. COVID-19 vaccines do not appear to adversely affect gametes, embryos, or implantation; therefore, active vaccination is recommended for women or men who are preparing for ART. The use of intravenous immunoglobulin G (IVIG) for the treatment of immune-related infertility is unlikely to impact the effectiveness of the vaccines, so COVID-19 vaccines can be administered around ART cycles in which IVIG is scheduled. Pregnant women have been proven to be at risk of severe maternal and neonatal complications from COVID-19. It does not appear that COVID-19 vaccines harm pregnant women or fetuses; instead, they have been observed to deliver antibodies against severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) to the fetus. Accordingly, it is recommended that pregnant women receive COVID-19 vaccination. There is no rationale for adverse effects, or clinical cases of adverse reactions, in mothers or neonates after COVID-19 vaccination in lactating women. Instead, antibodies to SARS-CoV-2 can be delivered through breast milk. Therefore, breastfeeding mothers should consider vaccination. In summary, active administration of COVID-19 vaccines will help ensure the safe implementation of ART, pregnancy, and breastfeeding.

6.
Clinical and Experimental Reproductive Medicine ; : 303-310, 2021.
Article in English | WPRIM | ID: wpr-913923

ABSTRACT

Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

7.
Clinical and Experimental Reproductive Medicine ; : 132-141, 2021.
Article in English | WPRIM | ID: wpr-897615

ABSTRACT

Objective@#Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. @*Methods@#Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. @*Results@#LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 μg/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. @*Conclusion@#An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.

8.
Clinical and Experimental Reproductive Medicine ; : 132-141, 2021.
Article in English | WPRIM | ID: wpr-889911

ABSTRACT

Objective@#Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. @*Methods@#Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. @*Results@#LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 μg/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. @*Conclusion@#An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.

9.
Intestinal Research ; : 325-336, 2020.
Article | WPRIM | ID: wpr-834411

ABSTRACT

Background/Aims@#Stress is closely related to the deterioration of digestive disease. Melatonin has potent anti-inflammatory properties. The objective of this study was to determine the effect of water stress (WS) and sleep deprivation (SD) on intestinal microbiota and roles of melatonin in stressful condition. @*Methods@#We used C57BL/6 mice and specially designed water bath for stress and SD for 10 days. We measured melatonin concentrations in serum, feces, and colon tissues by high-performance liquid chromatography. Genomic DNA was extracted from feces and amplified using primers targeting V3 to V4 regions of bacterial 16S ribosomal RNA genes. @*Results@#Compared to the control, melatonin concentration was lower in the WS and SD. Fecal concentration was 0.132 pg/mL in control, 0.062 pg/mL in WS, and 0.068 pg/mL in SD. In colon tissue, it was 0.45 pg/mL in control, 0.007 pg/mL in WS, and 0.03 pg/mL in SD. After melatonin treatment, melatonin concentrations in feces and colon tissue were recovered to the level of control. Metagenomic analysis of microbiota showed abundance in colitogenic microbiota in WS and SD. Melatonin injection attenuated this harmful effect. WS and SD showed decreased Lactobacillales and increased Erysipelotrichales and Enterobacteriales. Melatonin treatment increased Akkermansia muciniphila and Lactobacillus and decreased Bacteroides massiliensis and Erysipelotrichaceae. @*Conclusions@#This study showed that stress and SD could affect intestinal dysbiosis and increase colitogenic microbiota, which could contribute to the aggravating digestive disease. Melatonin concentrations in feces and colon tissue decreased under WS and SD. Melatonin treatment brought recovery of melatonin concentration in colon tissue and modulating dysbiosis of intestinal microbiota.

10.
Clinical and Experimental Reproductive Medicine ; : 85-93, 2020.
Article | WPRIM | ID: wpr-831356

ABSTRACT

The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.

11.
Clinical and Experimental Reproductive Medicine ; : 269-276, 2020.
Article in English | WPRIM | ID: wpr-897603

ABSTRACT

Objective@#We investigated the impact of tyrosine kinase inhibitor (imatinib or dasatinib) coadministration with cyclophosphamide (Cp) on preantral follicle development in an in vitro mouse model. @*Methods@#Seventy-three female BDF1 mice were allocated into 4 experimental groups: group A, saline; group B, Cp (25 mg/kg); group C, Cp (25 mg/kg) and imatinib (7.5 mg/kg); and group D, Cp (25 mg/kg) and dasatinib (7.5 mg/kg). Preantral follicles were isolated and cultured in vitro up to 12 days. Final oocyte acquisition and spindle integrity of metaphase II (MII) oocytes were assessed. Levels of 17β-estradiol and anti-Müllerian hormone (AMH) in the final spent media were measured by enzyme-linked immunosorbent assays, and the mRNA levels of Star, Sod1, Mapk3, and Casp3 in the final follicular cells were quantified by real-time polymerase chain reaction. @*Results@#The percentage of MII oocytes per initiated follicle, the proportion of MII oocytes with normal spindles, and the 17β-estradiol level were similar in all four groups. The median AMH level in group B (7.74 ng/mL) was significantly lower than that in group A (10.84 ng/mL). However, the median AMH levels in group C (9.96 ng/mL) and group D (9.71 ng/mL) were similar to that in group A. The mRNA expression levels of Star, Sod1, Mapk3, and Casp3 were similar in all four groups. @*Conclusion@#Coadministration of imatinib or dasatinib with Cp could preserve AMH production capacity in this in vitro mice preantral follicle culture model, and it did not affect MII oocyte acquisition.

12.
Clinical and Experimental Reproductive Medicine ; : 269-276, 2020.
Article in English | WPRIM | ID: wpr-889899

ABSTRACT

Objective@#We investigated the impact of tyrosine kinase inhibitor (imatinib or dasatinib) coadministration with cyclophosphamide (Cp) on preantral follicle development in an in vitro mouse model. @*Methods@#Seventy-three female BDF1 mice were allocated into 4 experimental groups: group A, saline; group B, Cp (25 mg/kg); group C, Cp (25 mg/kg) and imatinib (7.5 mg/kg); and group D, Cp (25 mg/kg) and dasatinib (7.5 mg/kg). Preantral follicles were isolated and cultured in vitro up to 12 days. Final oocyte acquisition and spindle integrity of metaphase II (MII) oocytes were assessed. Levels of 17β-estradiol and anti-Müllerian hormone (AMH) in the final spent media were measured by enzyme-linked immunosorbent assays, and the mRNA levels of Star, Sod1, Mapk3, and Casp3 in the final follicular cells were quantified by real-time polymerase chain reaction. @*Results@#The percentage of MII oocytes per initiated follicle, the proportion of MII oocytes with normal spindles, and the 17β-estradiol level were similar in all four groups. The median AMH level in group B (7.74 ng/mL) was significantly lower than that in group A (10.84 ng/mL). However, the median AMH levels in group C (9.96 ng/mL) and group D (9.71 ng/mL) were similar to that in group A. The mRNA expression levels of Star, Sod1, Mapk3, and Casp3 were similar in all four groups. @*Conclusion@#Coadministration of imatinib or dasatinib with Cp could preserve AMH production capacity in this in vitro mice preantral follicle culture model, and it did not affect MII oocyte acquisition.

13.
Clinical and Experimental Reproductive Medicine ; : 189-196, 2019.
Article in English | WPRIM | ID: wpr-785640

ABSTRACT

OBJECTIVE: We aimed to evaluate the effects of different oxygen conditions (20% [high O₂], 5% [low O₂] and 5% decreased to 2% [dynamic O₂]) on mouse pre- and peri-implantation development using a novel double-channel gas supply (DCGS) incubator (CNC Biotech Inc.) to alter the oxygen concentration during in vitro culture.METHODS: The high-O₂ and low-O₂ groups were cultured from the one-cell to the blastocyst stage under 20% and 5% oxygen concentrations, respectively. In the dynamic-O₂ group, mouse embryos were cultured from the one-cell to the morula stage under 5% O₂ for 3 days, followed by culture under 2% O₂ to the blastocyst stage. To evaluate peri-implantation development, the blastocysts from the three groups were individually transferred to a fibronectin-coated dish and cultured to the outgrowth stage in droplets.RESULTS: The blastocyst formation rate was significantly higher in the low-O₂ and dynamic-O₂ groups than in the high-O₂ group. The total cell number was significantly higher in the dynamic-O₂ group than in the low-O₂ and high-O₂ groups. Additionally, the apoptotic index was significantly lower in the low-O₂ and dynamic-O₂ groups than in the high-O₂ group. The trophoblast outgrowth rate and spread area were significantly higher in the low-O₂ and dynamic-O₂ groups than in the high-O₂ group.CONCLUSION: Our results showed that a dynamic oxygen concentration (decreasing from 5% to 2%) had beneficial effects on mouse pre- and peri-implantation development. Optimized, dynamic changing of oxygen concentrations using the novel DCGS incubator could improve the developmental competence of in vitro cultured embryos in a human in vitro fertilization and embryo transfer program.


Subject(s)
Animals , Humans , Mice , Apoptosis , Blastocyst , Cell Count , Embryo Transfer , Embryonic Structures , Fertilization in Vitro , In Vitro Techniques , Incubators , Mental Competency , Morula , Oxygen , Trophoblasts
14.
Obstetrics & Gynecology Science ; : 14-22, 2018.
Article in English | WPRIM | ID: wpr-741734

ABSTRACT

OBJECTIVE: Corticotropin-releasing hormone (CRH) is a crucial regulator of human pregnancy and parturition. Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels are important for regulating myometrial quiescence during pregnancy. We investigated regulatory effects of different concentrations of CRH on KATP channel expression in human myometrial smooth muscle cells (HSMCs) in in vitro conditions. METHODS: After treating HSMCs with different concentrations of CRH (1, 10, 102, 103, 104 pmol/L), mRNA and protein expression of KATP channel subunits (Kir6.1 and SUR2B) was analyzed by reverse transcription-polymerase chain reaction and western blot. We investigated which CRH receptor was involved in the reaction and measured the effects of CRH on intracellular Ca2+ concentration when oxytocin was administered in HSMCs using Fluo-8 AM ester. RESULTS: When HSMCs were treated with low (1 pmol/L) and high (103, 104 pmol/L) CRH concentrations, KATP channel expression significantly increased and decreased, respectively. SUR2B mRNA expression at low and high CRH concentrations was significantly antagonized by antalarmin (CRH receptor-1 antagonist) and astressin 2b (CRH receptor-2 antagonist), respectively; however, Kir6.1 mRNA expression was not affected. After oxytocin treatment, the intracellular Ca2+ concentration in CRH-treated HSMCs was significantly lowered in low concentration of CRH (1 pmol/L), but not in high concentration of CRH (103 pmol/L), compared to control. CONCLUSION: Our data demonstrated the regulatory effect was different when HSMCs were treated with low (early pregnancy-like) and high (labor-like) CRH concentrations and the KATP channel expression showed significant increase and decrease. This could cause inhibition and activation, respectively, of uterine muscle contraction, demonstrating opposite dual actions of CRH.


Subject(s)
Animals , Female , Humans , Mice , Pregnancy , Adenosine Triphosphate , Adenosine , Blotting, Western , Corticotropin-Releasing Hormone , In Vitro Techniques , KATP Channels , Myocytes, Smooth Muscle , Myometrium , Oxytocin , Parturition , Potassium Channels , Potassium , Receptors, Corticotropin-Releasing Hormone , RNA, Messenger
15.
Annals of Dermatology ; : 479-485, 2016.
Article in English | WPRIM | ID: wpr-171605

ABSTRACT

BACKGROUND: Immunohistochemistry and polymerase chain reaction (PCR) are the most widely used methods for the detection of viruses. PCR is known to be a more sensitive and specific method than the immunohistochemical method at this time, but PCR has the disadvantages of high cost and skilled work to use widely. With the progress of technology, the immunohistochemical methods used in these days has come to be highly sensitive and actively used in the diagnostic fields. OBJECTIVE: To evaluate and compare the usefulness of immunohistochemistry and PCR for detection human papilloma virus (HPV) in wart lesions. METHODS: Nine biopsy samples of verruca vulgaris and 10 of condyloma accuminatum were examined. Immunohistochemical staining using monoclonal antibody to HPV L1 capsid protein and PCR were done for the samples. DNA sequencing of the PCR products and HPV genotyping were also done. RESULTS: HPV detection rate was 78.9% (88.9% in verruca vulgaris, 70.0% in condyloma accuminatum) on immunohistochemistry and 100.0% for PCR. HPV-6 genotype showed a lower positivity rate on immunohistochemistry (50.0%) as compared to that of the other HPV genotypes. CONCLUSION: Immunohistochemistry for HPV L1 capsid protein showed comparable sensitivity for detection HPV. Considering the high cost and great effort needed for the PCR methods, we can use immunohistochemistry for HPV L1 capsid protein with the advantage of lower cost and simple methods for HPV detection.


Subject(s)
Humans , Biopsy , Capsid Proteins , Genotype , Human papillomavirus 6 , Immunohistochemistry , Methods , Papillomaviridae , Polymerase Chain Reaction , Sequence Analysis, DNA , Warts
16.
Journal of Korean Medical Science ; : S210-S216, 2014.
Article in English | WPRIM | ID: wpr-191059

ABSTRACT

Wound healing is initiated and progressed by complex integrated process of cellular, physiologic, and biochemical events, such as inflammation, cell migration and proliferation. Interleukin 6 (IL-6) is a multifunctional cytokine, and it could regulate the inflammatory response of wound healing process in a timely manner. Hyaluronic acid (HA) is an essential component of the extracellular matrix, and contributes significantly to cell proliferation and migration. The purpose of this study was to investigate the effects of IL-6 or/and HA on the cell migration process in human keratinocytes. Combining IL-6 and HA significantly increased the cell migration in scratch based wound healing assay. The phosphorylation of extracellular-signal-regulated kinase (ERK) was significantly increased after 1 hr of IL-6 and HA treatment, but the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was not. We also found that significant increase of the NF-kappaB translocation from cytoplasm into nucleus after 1 hr of IL-6 or/and HA treatments. This study firstly showed that synergistic effects of combining IL-6 and HA on the cell migration of wound healing by activation of ERK and NF-kappaB signaling. Further studies might be required to confirm the synergistic effects of HA and IL-6 in the animal model for the development of a novel therapeutic mixture for stimulation of wound healing process.


Subject(s)
Humans , Active Transport, Cell Nucleus/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Hyaluronic Acid/pharmacology , Interleukin-6/pharmacology , Keratinocytes/metabolism , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , Wound Healing , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Allergy, Asthma & Immunology Research ; : 329-336, 2013.
Article in English | WPRIM | ID: wpr-48229

ABSTRACT

PURPOSE: Prostaglandin (PG) E2 is an immunomodulatory lipid mediator generated mainly via the cyclooxygenase-2 (COX-2) pathway from arachidonic acid at sites of infection and inflammation. A positive feedback loop of PGE2 on COX-2 expression is critical for homeostasis during toll-like receptor (TLR)-mediated inflammatory processes. The mechanism of PGE2-regulated COX-2 expression remains poorly understood. The low-molecular-weight stress protein heme oxygenase-1 (HO-1) contributes to the anti-inflammatory, anti-oxidant and anti-apoptotic response against environmental stress. METHODS: We explored the involvement of HO-1 on PGE2 regulation of LPS-induced COX-2 expression in RAW 264.7 macrophages. RESULTS: LPS-induced COX-2 expression in RAW 264.7 macrophages was enhanced by exogenous PGE2 or cyclic AMP (cAMP) analogue and was suppressed by a COX inhibitor (indomethacin), a protein kinase A (PKA) inhibitor (KT5720), and A kinase anchoring protein (AKAP) disruptors (Ht31 and RIAD). This result suggests that the stimulatory effects of endogenous and exogenous PGE2 on COX-2 expression are mediated by a cAMP-PKA-AKAP-dependent pathway. The induction of HO-1 was observed in LPS-stimulated RAW 264.7 macrophages. This induction was suppressed by exogenous PGE2 and enhanced by blockage of the endogenous PGE2 effect by the PKA inhibitor or AKAP disruptors. In addition, HO-1 induction by the HO activator copper protoporphyrin suppressed LPS-induced COX-2 expression, which was restored by the addition of exogenous PGE2. The induction of HO-1 inhibited LPS-induced NF-kappaB p-65 nuclear expression and translocation. CONCLUSIONS: AKAP plays an important role in PGE2 regulation of COX-2 expression, and the suppression of HO-1 by PGE2-cAMP-PKA-AKAP signaling helps potentiate the LPS-induced COX-2 expression through a positive feedback loop in RAW 264.7 macrophages.


Subject(s)
Arachidonic Acid , Copper , Cyclic AMP , Cyclic AMP-Dependent Protein Kinases , Cyclooxygenase 2 , Dinoprostone , Heme , Heme Oxygenase-1 , Homeostasis , Inflammation , Intracellular Signaling Peptides and Proteins , Macrophages , NF-kappa B , Phosphotransferases , Toll-Like Receptors
18.
Journal of Korean Medical Science ; : 919-926, 2011.
Article in English | WPRIM | ID: wpr-31555

ABSTRACT

Neutrophil adhesion and migration are critical in hepatic ischemia/reperfusion (I/R) injury. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy in reperfusion injury. Therefore, the aim of this study was to assess the role of CD44 in neutrophil infiltration and liver injury from hepatic I/R. In this study, using a partial hepatic ischemic model in vivo, we determined the potential role of CD44 in neutrophil infiltration and liver injury from I/R. Reperfusion caused significant hepatocellular injury as it was determined by plasma ALT levels and liver histopathology. The injury was associated with a marked neutrophil recruitment and CD44 expression into the ischemic livers. Administration of anti-CD44 antibody to mice reduced the infiltration of neutrophil into the ischemic tissue, associated with liver function preservation. These results support crucial roles of CD44 in neutrophil recruitment and infiltration leading to liver damage in hepatic I/R injury. Moreover, they provide the rationale for targeting to CD44 as a potential therapeutic approach in liver I/R injury.


Subject(s)
Animals , Male , Mice , Alanine Transaminase/blood , Antibodies/immunology , Hyaluronan Receptors/immunology , Cytokines/metabolism , Disease Models, Animal , Liver/metabolism , Mice, Inbred C57BL , Neutrophils/immunology , Reperfusion Injury/metabolism
19.
Journal of the Korean Society of Plastic and Reconstructive Surgeons ; : 115-121, 2010.
Article in Korean | WPRIM | ID: wpr-32885

ABSTRACT

PURPOSE: Many topical agents had been used for contaminated wound treatment. Although antimicrobial ointments were widely used as topical agents, their comparative antibacterial and wound healing effects were largely unreported. The purpose of this study was to compare antibacterial effects and wound healing effects of common topical ointments on infected full thickness skin defect in the mouse. METHODS: One full thickness skin defects in the mice(n=60) were developed on the back and left open for twenty-four hours. Sixty mice were divided into four groups: group B(dressing with Bactroban(R), n=15), group I (dressing with Iodosorb(R), n=15), group T(dressing with Terramycin(R), n=15), group G(control group, dressing with dry gauze, n=15). The size of wound defects and the grades of wound healing were evaluated at 4, 7, 10 days, and antibacterial effect was evaluated with restricted zone in Mueller Hinton agar by disk diffusion method. RESULTS: After the wound was left open for twenty-four hours, many Staphylococcus aureus was cultured. The wound defect size was decreased in order of Bactroban(R)(B), Iodosorb(R)(I), Terramycin(R) and gauze dressing group in all days, but difference among experimental groups was not statistically significant. The grade score of wound healing was increased in order of Bactroban(R), Iodosorb(R), Terramycin(R) and gauze dressing group, and the difference was statistically significant. Antibacterial effect for was increased in order of Bactroban(R), Iodosorb(R), Terramycin(R) and gauze dressing group, and the difference was statistically significant. CONCLUSION: Topical antimicrobial ointments application was effective against wound infections by S. aureus. Bactroban(R) may be an optimal topical treatment for infected wounds according to this study. However, further study is necessary to evaluate the clinical efficacy of antimicrobial ointments and to search for the mechanisms that explain their effects.


Subject(s)
Animals , Mice , Agar , Bandages , Diffusion , Ointments , Skin , Staphylococcus aureus , Wound Healing , Wound Infection
20.
The Korean Journal of Gastroenterology ; : 384-389, 2010.
Article in English | WPRIM | ID: wpr-12843

ABSTRACT

BACKGROUND/AIMS: Functional and anatomical abnormalities of mitochondria play an important role in developing steatohepatitis. Carnitine is essential for enhanced mitochondrial beta oxidation through the transfer of long-chain fatty acids into the mitochondria. We examined the impact of carnitine complex on liver function and peripheral blood mitochondria copy number in NAFLD patients. METHODS: Forty-five NAFLD patients were enrolled. Patients were categorized into the carnitine complex-administered group and control group. Before and 3 months after drug administration, a liver function test and peripheral blood mitochondrial DNA and 8-oxo-dG quantitive analysis were conducted. RESULTS: In carnitine treatment group, ALT, AST, and total bilirubin were reduced after medication. There was no difference in AST, ALT, and total bilirubin between before and after treatment in control group. In carnitine group, peripheral mitochondrial DNA copy number was significantly increased from 158.8+/-69.5 copy to 241.6+/-180.6 copy (p=0.025). While in control group the mitochondrial copy number was slightly reduced from 205.5+/-142.3 to 150.0+/-109.7. 8-oxo-dG level was also tended to decrease in carnitine group (p=0.23) and tended to increase in control group (p=0.07). CONCLUSIONS: In NAFLD, the carnitine improved liver profile and peripheral blood mitochondrial DNA copy number. This results suggest that carnitine activate the mitochondria, thereby contributing to the improvement of NAFLD.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Bilirubin/blood , Carnitine/therapeutic use , DNA Copy Number Variations/drug effects , DNA, Mitochondrial/blood , Deoxyguanosine , Fatty Liver/diagnosis , Liver Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL